
To appear in ECOOP '93 Proceedings, Springer Verlag Lecture Notes on Computer Science.

Type Inference of SELF

Analysis of Objects with Dynamic and Multiple Inheritance

Ole Agesen

?1

, Jens Palsberg

2

, Michael I. Schwartzbach

??2

1

Dept. of Computer Science, Stanford University, Stanford, CA 94305, USA,

agesen@self.stanford.edu

2

Computer Science Dept., Aarhus University, Ny Munkegade, DK-8000

�

Arhus C,

Denmark, fpalsberg,misg@daimi.aau.dk

Abstract. We have designed and implemented a type inference algo-

rithm for the full Self language. The algorithm can guarantee the safety

and disambiguity of message sends, and provide useful information for

browsers and optimizing compilers.

Self features objects with dynamic inheritance. This construct has until

now been considered incompatible with type inference because it allows

the inheritance graph to change dynamically. Our algorithm handles this

by deriving and solving type constraints that simultaneously de�ne su-

persets of both the possible values of expressions and of the possible

inheritance graphs. The apparent circularity is resolved by computing a

global �xed-point, in polynomial time.

The algorithm has been implemented and can successfully handle the

Self benchmark programs, which exist in the \standard Self world" of

more than 40,000 lines of code.

Keywords: Languages and their implementation, tools and environments.

1 Introduction

The choice between static and dynamic typing involves a choice between safety

and exibility. The exibility o�ered by dynamically typed object-oriented lan-

guages is useful in exploratory programming but may also be a hindrance to

safety checking and optimization when delivering products.

Henry Lieberman [8] and Alan Borning [2] developed the notion of object-

oriented languages based on prototypes. The absence of classes and types in these

?

Generously supported by National Science Foundation Presidential Young Investi-

gator Grant #CCR-8657631, by Sun Microsystems, IBM, Apple Computer, Cray

Laboratories, Tandem Computers, NCR, Texas Instruments, DEC, by a research

fellowship from the Natural Science Faculty of Aarhus University, and by the Danish

Research Academy.

??

Partially supported by the Danish Research Council, DART Project (5.21.08.03).

1

languages yields a considerable exibility which may be signi�cantly increased

by the notions of dynamic and multiple inheritance. These language constructs,

however, make safety checking more di�cult than for class-based languages.

This paper presents a type inference algorithm for the Self language [13].

Self is a prototype-based dynamically typed object-oriented language featuring

dynamic and multiple inheritance. Our algorithm can guarantee the safety and

disambiguity of message sends, and provide useful information for tools such as

browsers and optimizing compilers. Although we focus on Self our work applies

to other languages as well.

Our approach to type inference is based on constraints, like in our previous

papers on an idealized subset of Smalltalk. In [10] we de�ned the basic type

inference framework, and in [9] we demonstrated an e�cient implementation.

Dynamic inheritance has until now been considered incompatible with type

inference because it allows the inheritance graph to change dynamically. Our

algorithm handles this by deriving and solving type constraints that simulta-

neously de�ne supersets of both the possible values of expressions and of the

possible inheritance graphs. The apparent circularity is resolved by computing

a global �xed-point, in polynomial time.

In most other type inference algorithms for object-oriented languages, for

example that of Graver and Johnson [7, 6] and our own [10, 9], inheritance

is expanded away rather than dealt with directly. Using prototypes, however,

expansion is impossible, since a parent may have an independent state. This

paper demonstrates how to handle inheritance without expansion. It also shows

how to handle blocks with non-local return.

In the following Section we give an overview of the required type constraints.

In Section 3 we present example runs of our implementation, and in Section 4

we discuss details of our algorithm and implementation. Finally, in Section 5 we

summarize our results and conclusions.

2 Type Constraints

Self [13] resembles Smalltalk [5] on the surface. However, there are major

di�erences that make Self a particularly interesting language to analyze: Self

has no classes, instantiation is object cloning, inheritance is between objects

having independent state and identity, and the inheritance may be both dynamic

and multiple. Dynamic inheritance allows the inheritance graph to change during

program execution. The dynamic nature of Self makes it harder to obtain non-

trivial type information for Self programs than for, say, Smalltalk programs.

It also makes such information immediately useful in browsers and optimizing

compilers.

Below we describe our approach to type inference for Self. We will use the

Self-terminology without explanation.

2

2.1 Constraint-Based Analysis

Our approach to type inference is based on constraints, like in our previous

papers on an idealized subset of Smalltalk. The main idea in constraint-based

analysis [15, 12, 11] is as follows. First, de�ne type variables for the unknown

type information. Second, derive constraints on these variables from the given

program. Third, solve the resulting constraints to obtain the desired information.

The algorithms in [10, 9] had safety checking as an integral part of the type

constraints. As a result, type information could not be inferred for incorrect

programs that could provoke a msgNotUnderstood error. The approach in this

paper is more liberal, so type information can be computed for all programs. This

may be useful during program development and debugging, since information

about a partially correct program can be obtained. When a guarantee against

msgNotUnderstood or ambiguousSend errors is desired, it can be provided by a

tool that inspects the computed type information (although it is straightforward

to implement these tools, we haven't done it yet).

2.2 Types and Type Variables

Any given Self program contains a �xed number of objects (some of which are

\block objects") and methods (which are either \normal methods" or \block

methods"). We introduce a unique token for each of these: !

1

; . . . ; !

n

for the

objects and �

1

; . . . ; �

m

for the methods. We use � to denote the token for any

object or method.

For every expression in a program we want to infer its type. The type of an

expression is a set of tokens indicating the objects to which the expression may

evaluate in any execution of the program. Since exact information is uncom-

putable in general, we will be satis�ed with a (hopefully small) superset.

We now assign every expression a type variable [[E]]

�

. Here E is the syntax

of the expression and � is the token for the nearest enclosing object or method.

The intuition is that [[E]]

�

denotes the type of the expression E in the object or

method � . In our previous papers, constraint variables simply looked like [[E]]

(without the index); this was possible since we, unlike in this approach, were

able to expand away inheritance. We have a similar type variable [[x]]

�

for every

argument, variable, or parent slot x. There is also an auxiliary type variable

[[�]] for each method �. [[�]] denotes the type of the values that � may return.

The auxiliary type variables are needed to handle non-local returns. All type

variables range over sets of tokens.

2.3 Constraints for Self

From the syntax of the given program we generate and solve a �nite collection

of constraints. These constraints, which are presented by means of a trace graph

[10, 9], are all conditional set inclusions. Using the trace graph technique, we need

only de�ne constraints for local situations; the corresponding global constraints

will then automatically be derived, as described below.

3

We have a trace graph node for each object and method in the program. The

main node of the trace graph is the node corresponding to the initial method in

the program being analyzed (in a C program this would be the main function).

Each trace graph node contains local constraints which are generated from the

syntax; some examples are shown in Figure 1. The local constraints are quite

straightforward. They directly reect the semantics of the corresponding con-

structs, constraining the types of expressions in a bottom-up fashion. For slots,

1), 2), and 3), ! is an object and � is a method. The �rst constraint is associ-

ated with a dynamic parent slot. The constraint says that the initial object in

the slot is included in the slot's type. The second constraint is analogous, but for

a variable slot. The third constraint is associated with a method slot and it lifts

the type of the method, [[�]], to the type of the slot, [[Id]]. Constraint 4) speci�es

that the type of a sequence of expressions is determined by the type of the last

expression in the sequence. 5) is for a primitive, Clone. The constraint says that

a clone of an object has the same type as the object. There are of course many

more primitives|a few hundred in fact|so the type inference implementation

has a database of primitive local constraints currently covering the 100 most im-

portant primitives. Constraints 6) and 7) reect the fact that an object literal

evaluates to itself.

Slots: Constraint:

1) Id* ! [[Id]]

�

� f!g

2) Id ! [[Id]]

�

� f!g

3) Id = � = (j S j E) [[Id]]

�

� [[�]] � [[E]]

�

Expression: Constraint:

4) E

1

. E

2

[[E

1

. E

2

]]

�

� [[E

2

]]

�

5) E Clone [[E Clone]]

�

� [[E]]

�

6) (j S j) [[(j S j)]]

�

� fthe token for this objectg

7) [j S j . . .] [[[j S j . . .]]]

�

� fthe token for this blockg

Fig. 1. Some local constraints for Self.

When de�ning the local constraints we are fortunate that Self is a minimal

language in which most mechanisms are coded in the language itself, starting

with only a small core. For example, control structures such as ifTrue:False:, do:,

and whileTrue: are implemented by normal Self methods and objects. However,

we pay a daunting price for this simplicity, since any program being analyzed is

likely to use several of these control structures which are unseparable from the

standard Self world of more than 40,000 lines of code. Our experiences with

this are detailed in Section 3.

Trace graph edges describe possible message sends. There is an edge from

4

node A to node B, if A may invoke B. Each edge is decorated with connecting

constraints, which reect parameter passing during a message send. The crucial

part in setting up this picture is to associate a condition with each edge. If all

possible edges were taken seriously, then we would obtain only very pessimistic

results from our type inference. It would correspond to the assumption that

every object could send every possible message to every other object. However,

if the condition of an edge is false, then it can safely be ignored.

Edge conditions must be sound, i.e., if some condition is false in the type

analysis, then the corresponding message send must be impossible at run-time.

There is a circularity between conditions and local constraints, in that conditions

depend on type variables which are determined by local constraints, the relevance

of which depends on conditions. We resolve this circularity by a global �xed-point

computation.

The trace graph technique derives global constraints by considering all paths

without repeating edges from the main node; they correspond to abstract traces

of a possible execution. Each such path yields a conditional constraint. The

condition is the conjunction of the individual conditions on the edges, and the

constraint is the conjunction of both the local constraints in the node to which

the path leads and the connecting constraints of the �nal edge of the path.

Such a global constraint means intuitively that if this trace is possible during

execution, then these constraints must hold. For further details about the trace

graph technique and how to derive global constraints, see [10, 9].

The circularity between conditions and constraints is fairly simple for a lan-

guage like Smalltalk, which has dynamic dispatch but static inheritance. When

we include dynamic and multiple inheritance, several further complications arise.

The conditions now have to soundly reect possible searches through parent

chains existing only at run-time, and they should of course be as restrictive as

possible. This development is detailed below.

For Self, there are several di�erent kinds of edges, reecting that the uni-

formmessage send syntax is (intentionally) overloaded to do several semantically

di�erent things. An edge kind is determined by two orthogonal choices:

{ The kind of send. In Self there are four kinds of sends: send to implicit self,

send to an explicit receiver, undirected resend (super), and directed resend

(delegation).

{ The kind of slot that is \invoked" by the send. In Self, message sends are

used to invoke normal methods, invoke block methods, read variables, and

write variables. Furthermore block methods come in two avors: with and

without non-local return.

These 4� 5 choices have many things in common, but no two of them have the

exact same semantics. Hence, our approach involves 20 di�erent kinds of edges.

In the followingwe will restrict our attention to a send of the form \E

1

id: E

2

",

i.e., a send to an explicit receiver. Furthermore, we will only look at the cases

where a normal method or a block method (with and without non-local return)

is invoked. The last simpli�cation we have made is to consider only a send with a

5

single argument; the situations trivially generalize to an arbitrary number of ar-

guments. We �rst present the edges for the case where the send invokes a normal

method. Then we present the edges for invoking block methods. The remaining

17 cases are all quite analogous to the three we show.

-

� 2 [[self]]

�

[[E

1

id: E

2

]]

�

� [[�]]

[[E

2

]]

�

� [[arg]]

�

� 2 [[E

1

]]

�

^ ! 2 anc(�; id:)

!

id: = (j:argj E)

| {z }

�

�

E

1

id: E

2

(j

j)

Fig. 2. Edge for invoking a normal method.

Normal method invocation. The edge in Figure 2 describes invocation of

a normal method. The expression above the arrow is the condition; the subset

relations below the arrow are the constraints that must be respected if the con-

dition becomes satis�ed. The method being invoked is �. It is found in a slot

named \id:" in the object !. The sender is � , a block or normal method that

contains the send \E

1

id: E

2

". Finally, � is an object in the type of the receiver

expression [[E

1

]]

�

. We have the obvious connecting constraints for the argument

and the result, plus one for maintaining the self parent in the invoked method �.

Because of dynamic and multiple inheritance, the condition involves the function

anc(�,id:) which computes the ancestors of � that the message \id:" can reach.

This is done by directly expressing the lookup algorithm of Self, but perform-

ing the search in the domain of type variables rather than objects (which do

not exist until run-time), see Figure 3. We obtain a great deal of modularity in

this manner, since changes in the de�nition of the lookup algorithm need only

be reected in the anc function; in all other respects the constraints can be

left unchanged. This has already been veri�ed in practice since parent priorities

were recently eliminated from Self. The code in Figure 3, though, applies to

the old semantics of Self as found in release 2.0.1 [1]. For simplicity, the code in

Figure 3 ignores privacy of methods and detection of cycles (Self allows cyclic

inheritance graphs).

Block method invocation.Block methods are di�erent from normalmeth-

ods in two major aspects. First, instead of a self parent they have an anonymous

parent that refers to the lexically enclosing method. Second, they may have a

non-local return. It is of minor importance for our work that block methods are

only found in block objects, and that they are always in slots whose names start

with value.

6

Algorithm LOOKUP(obj: object; id: string)

var m0, m: object;

if obj has id slot then

return obj

end;

for i := 1 to MaxPriority do

m0 := nil;

for all parent slots p

of priority i in obj do

m := LOOKUP(contents(p),id);

if m = ambiguousSend then

return m

end;

if m 6= msgNotUnderstood then

if m0 6= nil ^ m0 6= m then

return ambiguousSend

else

m0 := m

end

end

end;

if m0 6= nil then return m0 end;

end;

return msgNotUnderstood

end LOOKUP.

Algorithm ANC(obj: token; id: string)

var found, f: boolean;

var res: set of token;

if obj has id slot then

return fobjg

end;

for i := 1 to MaxPriority do

found := false; res := fg;

for all parent slots p

of priority i in obj do

f := true;

for all a in [[p]] do

f := f ^ ANC(a,id) 6= fg;

res := res [ANC(a,id)

end;

found := found _ f

end;

if found then return res end

end;

return res

end ANC.

Fig. 3. Method lookup in Self release 2.0.1 and the derived ANC function.

The edge for invoking a block method without a non-local return is shown

in Figure 4. We have renamed the send to \E

1

value: E

2

". The condition reects

that the send is subject to the full lookup, e.g. in the \worst" case the block

method may be inherited through dynamic parents. Comparing with the edge

for invoking a normal method, we note that there is no constraint involving self.

This is because block methods have no self slot of their own; rather they inherit

the lexically enclosing method's self slot through their lexical parent, and the

invocation of the block method does not a�ect self. Otherwise the two kinds of

edges have the same connecting constraints and conditions.

The edge for invoking a block method with a non-local return is shown in

Figure 5. The block method being invoked is again labeled �. The \"" designates

that the following expression, E', is returned non-locally. A non-local return in

Self, as in Smalltalk, does not return to the point of the send that invoked

the block method, but to the point of the send that invoked the method in which

the block is contained. The edge in Figure 5 di�ers by a single constraint from

the edge in Figure 4. The constraint involving the type of the send expression

is missing, because invocation of a block method with non-local return does not

7

-

[[E

1

value: E

2

]]

�

� [[�]]

[[E

2

]]

�

� [[arg]]

�

� 2 [[E

1

]]

�

^ ! 2 anc(�; value:)

!

value: = (j:argj E)

| {z }

�

�

E

1

value: E

2

[j

j]

Fig. 4. Edge for invoking a block method.

return to the send point that invoked the block method.

-

[[E

2

]]

�

� [[arg]]

�

� 2 [[E

1

]]

�

^ ! 2 anc(�; value:)

!

value: = (j:argj E."E')

| {z }

�

�

E

1

value: E

2

[j

j]

Fig. 5. Edge for invoking a block method with non-local return.

�

normal

: (

.

.

.

�

block

: [. . . " . . .]

.

.

.

)

[[�

block

]] � [[�

normal

]]

Fig. 6. Non-local connecting constraint.

Non-local return. Independently of these edges, we have some uncondi-

tional non-local connecting constraints, which reect the possible control ow of

non-local returns. One such is shown in Figure 6: the result of a block method,

�

block

, with non-local return can become the result of the enclosing normal

method object, �

normal

.

8

2.4 Code Duplication

As suggested in [10, 9], it is often necessary to duplicate code to obtain su�-

ciently precise types. The idea is for each method to make individual copies for

every syntactic invocation. These copies can then be separately analyzed, so that

unwanted \cross-constraints" can be avoided.

This process can be iterated to yield ever more precise type information,

but at a huge cost since a single copying of all methods may square the size

of the program. The need for code duplication may vary greatly from method

to method; thus, a good implementation must include sensible heuristics for

deciding when to duplicate the code for a method. We have been quite successful

in �nding such heuristics for the Self analysis; see Section 4 for further details.

2.5 Constraint Solving

All the global type constraints, derived from the trace graph, can be written as:

c

1

^ . . .^ c

n

=) X � V

where V is a type variable, X is either a type variable or a constant set of

tokens, and the c

i

's is are monotonic conditions. Monotonicity of a condition

simply means that it can never be true for a particular assignment of types to

variables and false for a strictly larger one. In our case, assignments are ordered

by variable-wise set inclusion.

In [10] it is shown that if the type constraints are monotonic, they have a

unique minimal solution, which is also computable. To see that our constraints

for Self are monotonic, we look at a typical condition c

i

which has the form

� 2 [[E]]

�

^ ! 2 anc(�; id).

Conjunction preserves monotonicity, so it is enough to ensure that each conjunct

is monotonic. The �rst conjunct obviously is. The second conjunct is monotonic

if a larger assignment of types to variables will result in a larger set of ancestors

being returned by anc. This property of anc is of course dependent on the

particular lookup strategy that anc is derived from. However, any reasonable

strategy will likely share this property and indeed the one we study does. This

can be informally seen as follows. Imagine �rst executing anc for one type

assignment and then later executing it for a larger type assignment, see Figure 3.

The second execution will perform more iterations in the innermost loop, since

[[p]] will be larger, (by induction) causing a larger res set to be accumulated.

Furthermore, searching more parents in the inner loop will never cause the search

to be terminated at a higher parent priority (i.e., earlier), since there are more

chances for the control variable f to become false, hence found will become true

no sooner.

In Section 4 we describe how to obtain an e�cient, polynomial-time algorithm

for solving monotonic type constraints. It is similar to the one presented in [9],

in using a lazy, incremental strategy; however, the new algorithm is a drastic

improvement. Early experiments with the old algorithm, adapted to the Self

language, showed an unacceptable performance.

9

3 Examples

A good illustration of both the strengths and weaknesses of our type inference

technique is obtained by looking at examples. Illustrating the capabilities of the

technique has been our �rst goal when choosing the examples. Our second goal

has been to show that our approach is realistic. This has had three consequences:

{ All our examples are \real" in the sense that they are part of the standard

Self system. The code has not been (re)written or modi�ed in any way

whatsoever for the purpose of being analyzed. If desired, the test programs

can be studied in context, by obtaining a copy of the Self system by anony-

mous ftp from self.stanford.edu. The only pieces of code that we have

written are a few message sends to invoke the main body of the code.

{ The code being analyzed is not self-contained: it is an integrated part of a

large body of code, the Self world. Previous work on type inference has

mainly analyzed self-contained code. Analyzing a 200 line program of which

100 lines implement a unary representation of natural numbers is not as

interesting, or challenging, as analyzing 200 lines of code that just assume

and use a fully developed implementation of numbers, collection classes, and

other data structures.

{ Previous articles [10, 9] have listed small programs, the derived constraints,

and their minimal solution as found by a particular constraint solving algo-

rithm. Since the constraints are hard to read and we want to scale towards an-

alyzing realistically sized programs which produce thousands of constraints,

we do not list any constraints in this section.

We present three concrete examples, each focusing on di�erent aspects of both

the type inference and the Self system. The �rst example shows how tightly

coupled much of the Self code is. The second example illustrates the capabilities

of a browser based on type inference. The third example deals with dynamic

inheritance.

3.1 The Tangled Web: Simple Arithmetic

Our �rst example is conceptually the simplest, yet it illustrates very well just

how tightly integrated the code in the Self world is. We start with almost the

simplest possible expressions and observe how a plethora of methods and objects

come into play.

Self has a hierarchy of number objects, the leaves of which are: smallInt

which are limited to 30 bits precision, bigInt which have unlimited precision,

and oat. Mixed representation arithmetic is supported via dynamic dispatching

and implicit coercions. For example, if an operation on smallInt overows, the

objects will transparently be coerced to bigInt and the operation will be retried.

The consequence is that understanding how a simple expression such as 3+4 is

computed is not trivial.

We have de�ned a small object with messages performing various arithmetic

operations, some of which will fail if executed; the object is shown in Figure 7. We

10

example1Object = (|

parent* = traits oddball. "Inherit default behavior."

test1 = (3 + 4). "Result: 7"

test2 = (3.5 + 4). "Result: 7.5"

test3 = (3 + 4.5). "Result: 7.5"

test4 = (3.5 + 4.5). "Result: 8.0"

test5 = (nil + 4.5). "Result: error"

test6 = (3 + 'random string'). "Result: error"

|).

Fig. 7. Arithmetic operations.

have performed type inference on this object in several di�erent con�gurations;

observations about this are listed in Figure 8, where, e.g., the column labeled

\standard system" shows the results of inferring types in the standard Self

system. Each cell in the table shows the inferred type of the expression analyzed,

the number of trace graph edges involved, the number of methods analyzed, and

the time it took to infer the types on a SPARCstation 2 (we will comment briey

on the execution times in Section 4).

First look at the \standard system" column. Several interesting points should

be noted:

{ This is the exact output as produced by the type inference implementation,

except for a nicer write-up.

{ Our type inference does no range analysis or constant folding, so it cannot

determine if overows occur. This is why bigInt shows up e.g. in test1, even

though 3+4 will never overow.

{ Why does bigInt show up in test3? Inspection of the code reveals that adding

a oat to a smallInt can never result in a bigInt. The reason that the type

inference cannot determine this is related to a single primitive message send,

see Figure 9. The algorithm infers that the primitive send may fail, hence

it analyzes the fail block. The fail block handles two failure modes: over-

ow (adding too big a smallInt) and badTypeError (e.g. adding a oat to a

smallInt). The two failure modes cannot be distinguished by looking at type

information only. The fail block distinguishes them by comparing values, not

types (speci�cally string pre�x tests are used). Being limited to types, the

inference algorithmmust assume that both failure modes are possible, hence

it cannot determine that the bigInt case never occurs.

{ The empty types, inferred for the last two tests, indicate that an error will

occur with certainty. The trace graph can be analyzed, and the exact send(s)

that will fail can be identi�ed.

{ Of the two empty types inferred, one is a lot harder to infer than the other.

In test5 there is only a single message send that has a matching slot: this is

the send of nil to implicit self that is matched by a slot in an ancestor. The

next send, +, �nds no matching slot in nil or any of nil's ancestors and hence

the type inference is completed. The contrast is test6: to determine that a

11

Method Standard system No bigInt No bigInt or isPre�xOf:

test1 = (3 + 4)

f smallInt, bigInt g

16,757 edges

4,969 nodes

60 seconds

f smallInt g

2,444 edges

874 nodes

8 seconds

f smallInt g

91 edges

41 nodes

0 seconds

test2 = (3.5 + 4)

f oat g

16,763 edges

4,972 nodes

60 seconds

f oat g

2,490 edges

894 nodes

9 seconds

f oat g

76 edges

34 nodes

0 seconds

test3 = (3 + 4.5)

f oat, bigInt g

16,782 edges

4,979 nodes

60 seconds

f oat g

2,509 edges

904 nodes

8 seconds

f oat g

123 edges

58 nodes

0 seconds

test4 = (3.5 + 4.5)

f oat g

16,742 edges

4,964 nodes

60 seconds

f oat g

2,468 edges

885 nodes

8 seconds

f oat g

54 edges

25 nodes

0 seconds

test5 = (nil + 4.5)

f g

1 edge

1 node

0 seconds

f g

1 edge

1 node

0 seconds

f g

1 edge

1 node

0 seconds

test6 = (3 + 'str')

f g

16,755 edges

4,969 nodes

61 seconds

f g

2,520 edges

905 nodes

9 seconds

f g

2,434 edges

880 nodes

9 seconds

Fig. 8. Type inference of arithmetic operations.

string is not a good argument to give the + method of smallInt requires a

detailed analysis of this and many other methods.

{ The number of edges and nodes is very large; each edge corresponds to a

possible message send, each node corresponds to a method that was analyzed

(of course, the large numbers are partially caused by the code duplication

being done internally by the type inference algorithm, see sections 2.4 and

4).

In order to explain how a simple addition can potentially result in so much

code being executed, the type inference was repeated in a world without bigInt.

The result is shown in the \no bigInt" column of Figure 8.

The inferred types are not surprising, but the number of edges, although

lower, is still high. The explanation is found in the fail block; Figure 9 shows a

fragment of code which is the core of the smallInt addition (�le smallInt.self,

line 18). Virtual machine primitives in Self have the same syntax as \real"

message sends, but have names starting with \ " such as IntAdd:IfFail:. The last

argument is a \fail block". It is invoked to produce the result of the primitive

send, if the virtual machine is unable to complete the primitive operation, e.g.

12

^ + a = (asSmallInteger _IntAdd: a IfFail: [| :error. :name. |

('badTypeError' isPrefixOf: error) ifTrue: [

" use double dispatching "

a addSmallInteger: asSmallInteger] False: [

('overflowError' isPrefixOf: error) ifTrue: [

" retry after coercing to bigInts "

asBigInteger + a asBigInteger] False: [

primitiveFailedError: error Name: name]]]).

Fig. 9. Core of smallInt addition.

because it is given an object of type oat where it expects a smallInt. The test

isPre�xOf: is complex because it uses general collection behavior to analyze if one

sequence (here a string) is a pre�x of another. The type inference algorithm pre-

cisely infers that the result of isPre�xOf: is true or false, but has to do a non-trivial

amount of analysis. Short-circuiting the isPre�xOf: method and performing the

inference again shows that we have indeed found the correct explanation for the

many edges. The data are shown in the last column of Figure 8. We anticipate

that the results of this analysis might lead to redesign of the primitive failure

blocks in the future.

The latter example shows that the analysis of failure code signi�cantly com-

plicates the task of type inference. Previous type inference algorithms for object-

oriented languages either assume that failures such as overow are impossible, or

treat them as fatal, i.e., the e�ect of failures is not propagated into the following

code. We believe that for a type inference technique to be practical, it must be

able to precisely analyze failures, not just \normal" execution.

For the last two examples we return to analyzing the standard system, i.e.,

with bigInt de�ned and no short-circuiting of any message.

3.2 Browsing Programs: Towers of Hanoi

To gather data for our second example we ran the type inference algorithm on

a program that solves the well-known \Towers of Hanoi" problem. The pro-

gram itself has a long history. Originally, it was written in Pascal and included

in the \Stanford Integer Benchmarks" suite collected by John Hennessy. Later

the benchmarks were translated to Self and used to characterize the run-time

performance of the Self system [3].

Now we use the towers oo program to illustrate how a browser may combine

program text with inferred types, to make program understanding easier. We

call such a browser a \hyperbrowser" and, although we haven't implemented it

yet, we believe that the following scenario is realistic, since it is directly based

upon information computed by the type inference algorithm.

We use this example to illustrate two things. First, we show how the raw

type information computed by the type inference algorithm is useful when a

programmer is trying to understand object-oriented programs. Second, we show

13

how control ow information that can be derived from the type information can

be equally useful in the same situations.

The complete program text for the Towers of Hanoi program and selected

type annotations produced by the hyperbrowser are shown in Figure 10. Let us

look at the annotations one at a time. The paragraph numbers below refer to

the numbers next to the annotations in the �gure.

1. The runBenchmark method is the \main" method of the program. It is send-

ing various messages to implicit self. Most of the sends ignore the return

value and have constant arguments, i.e., their types are manifest from the

program text. movesdone is the only exception so we \click" on it to see what

information the hyperbrowser can give us. The result is the \balloon" labeled

1: movesdone has type fnil, smallInt, bigIntg. If we want to know which meth-

ods the send may invoke (including which variables it may read or write) we

can ask the browser for \forward control ow" information. The answer is

that the movesdone send will always be answered by reading a variable in a

towers oo object.

The type of the send includes nil because movesdone is not initialized (see

line 3 of the program): by combining type inference with data ow analysis,

types can be improved in such situations [14]. The fact that nil shows up

in the type could alternatively be attributed to \bad" programming style:

prototype objects should have their slots initialized with proper prototyp-

ical objects, else they are not prototypical. In the speci�c case this means

that movesdone should be initialized with an integer object. The towers oo

benchmark probably does not follow this style in order to be as similar as

possible to the original Pascal program.

2. Next we focus on the tower:I:J:K: method. Again, in such a simple program

it is hard to �nd interesting questions to ask, but at least it is not obvious

what the method returns. A click on the selector of the method brings up

balloon 2 which shows that the method will always return a towers oo object,

i.e., it returns self.

3. Continuing our exploration we focus on the pop: method. First, what is the

type of the argument? This question is easily answered, see balloon 3, but

there is the annoying nil again! If we wanted to explore the nil issue further,

we could ask the browser for \backward control ow", and be shown all the

sends that invoke pop:. We could even ask to see only the sends that invoke

pop: with an argument that may be nil. This would quickly reveal that

nil is here because of another uninitialized variable: other in the towerI:J:K:

method.

4. We now look at the return type of pop:. The disc and sentinel objects in

balloon 4 seem reasonable, and by now we have learned that the author of

the program has a lenient attitude towards nil, so we decide to get an answer

to the question: \why can a string be returned?"

5. Our �rst attempt to answer this question is to \click" on the result send

which, being the last in the method, produces the return value. No luck

here, though, since there is no string in the resulting balloon 5.

14

fnil,bigInt,smallIntg

Slot read: towers oo

fdisc,sentinel,nilg

fstringg

�

�

�

�

�

�

�

X

X

X

X

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

a

a

a

a

a

a

benchmark2 towers oo Define: (|

parent* = traits benchmarks.

movesdone.

stackrange = 3.

stack = vector copySize: "stackrange" 3.

discSize: i = (disc copy discSize: i).

error: emsg = ('Error in towers oo: ' print emsg printLine.).

makenull: s = (stack at: s Put: sentinel).

disc = (| parent** = traits clonable. "Disc object prototype."

discSize.

next. |).

pop: s = (| result |

push: d OnTo: s = (| localel |

localel: stack at: s.

sentinel = (stack at: s) ifTrue: ["error: 'nothing to pop'].

result: stack at: s.

stack at: s Put: result next.

result).

d discSize >= localel discSize ifTrue: ["error: 'disc size error'].

6:

stack at: s Put: d next: localel.

self).

init: s To: n = (

n downTo: 1 Do: [| :discctr |

push: (discSize: discctr) OnTo: s.]).

moveFrom: s1 To: s2 = (

push: (pop: s1) OnTo: s2.

movesdone: movesdone successor.).

towerI: i J: j K: k = (

k = 1 ifTrue: [

moveFrom: i To: j.

] False: [| other |

other: 3 - i - j.

towerI: i J: other K: k predecessor.

moveFrom: i To: j.

towerI: other J: j K: k predecessor.

]).

runBenchmark = (

makenull: 0.

makenull: 1.

makenull: 2.

init: 0 To: 14.

movesdone: 0.

towerI: 0 J: 1 K: 14.

movesdone = 16383 ifFalse: ['Error in towers.' printLine].

self).

|)

benchmarks towers oo AddSlots: (|

sentinel = benchmarks towers oo discSize: 15.

|)

towers oo

2:

1:

Senders: moveFrom:To:

fsmallInt,bigInt,nilg

3:

fdisc,sentinel,nil,stringg

4:

5:

Fig. 10. Program to solve the Towers of Hanoi problem.

15

6. Going back to balloon 4 and asking for control information, the browser

resolves the mystery: balloon 6 pops up and shows us that string is injected

into the return type by the block doing a non-local return. It could be claimed

that we have found a bug in the program: error: should not return a string;

in fact it should not return at all.

By now it should be clear that the type inference algorithm computes detailed

and precise information whose application includes, but goes beyond, simply

establishing safety guarantees for programs.

3.3 Mastering Dynamic Inheritance: Binary Search Trees

The previous example illustrated how a hyperbrowser can provide assistance

in understanding the control ow of programs that use dynamic dispatching.

Dynamic inheritance, while providing the ultimate in expressive power, also

provides the ultimate in control ow confusion in the sense that even if the

exact receiver type of a send is known, it is still not possible to determine which

method is invoked. Fortunately, type inference provides the kind of information

that programmers need in order to curb the complexity of dynamic inheritance.

Our �nal example demonstrates this.

One use of dynamic inheritance is to implement objects with modal behavior.

The canonical example in the Self system is the implementation of an ordered

set data type using binary search trees. A tree is identi�ed by a single node.

Nodes are either leaves which contain no elements (e.g., the empty tree is a

single leaf node) or they are interior nodes which contain an element and two

subtrees. The behavior of any given node is determined by a dynamic parent.

The parent will switch during execution whenever a node changes status from

interior to leaf or vice versa.

Figure 11 shows selected parts of the Self implementation of trees. Due to

lack of space, we are unable to list the entire implementation which consists

of some 300 lines of code. To simplify further, we have also removed a level

of inheritance that is only used because the objects implement both sets and

multisets. The �gure shows three objects: traits emptyTrees which holds behavior

for leaves, traits treeNodes which holds behavior for interior nodes, and treeNode

which has a dynamic parent that initially holds traits emptyTrees.

The includesKey: methods search a tree for a given key. Since treeNode inherits

this method through the dynamic parent, the result of sending includesKey: to a

treeNode depends on the object in the parent slot.

The key to understanding a program that uses dynamic inheritance, is to un-

derstand all the behavioral modes. This requires knowing all the possible objects

that can occur in the dynamic parent slots. Unfortunately, �nding these objects

is not easy: for example, with incomplete knowledge about the set of parents,

the programmer has incomplete knowledge about the assignments that change

the dynamic parents. Breaking this circularity is not trivial. Merely executing

the program and observing the contents of the dynamic parent slots is not suf-

�cient, since the programmer can never be sure that a new type of parent will

16

traits emptyTrees _Define: (|

parent* = traits tree.

add: x = (parent: nodeProto nodeCopyKey: x Contents: x).

includesKey: k = (false).

removeAll = (self).

...

|)

traits treeNodes _Define: (|

parent* = traits tree.

includesKey: x = (

findKey: x

IfHere: true

IfNot: [| :subTree | subTree includesKey: x]).

removeAll = (parent: emptyTreeTraits).

left <- treeSet copy.

right <- treeSet copy.

key.

...

|)

treeNode _Define: (|

parent* <- traits emptyTrees.

|)

Fig. 11. Binary search tree implementation using dynamic inheritance.

not show up next time the program is executed. The strong guarantees that the

programmer needs to reason correctly about the behavior of the program cannot

be provided by the subsets of actual types that are the result of observing dy-

namic behavior. In contrast, type inference, which computes supersets, directly

provides such guarantees: if a type T is inferred for a dynamic parent slot S, the

programmer knows that in any execution of the program, the contents of S will

always be (a clone of) one of the objects found in T . Another way of looking at

this is that the �xed-point computation performed during type inference breaks

the above-mentioned circularity.

To be concrete, we have inferred types for an example program that uses

the (non-simpli�ed) search trees taken from the Self world. The analysis|as

usual|computes a type for every expression and slot in the program, but in this

case we focus on a single question: \what are the possible parents of treeNode

objects?" The answer is decisive:

[[parent]]

treeNode

= f traits emptyTrees, traits treeNode g.

That is, the type analysis has inferred the precise behavioral modes for tree

nodes. Having access to the types of all dynamic parents, the hyperbrowser

17

could also provide control ow information, including information for sends that

are looked up through dynamic parents. Furthermore, since the inferred types

are precise, so will the control ow information be. We will not go into details

with this since it is similar to the Hanoi browsing scenario.

4 Algorithm and Implementation

The problem with a naive implementation of the constraint solver is that an

explicit construction of the trace graph will be much too costly for programs of

realistic sizes. In [9] this was remedied by an incremental computation of both the

trace graph and its minimal solution. Starting with the main node, the general

situation would be that a connected part of the graph had been constructed and

its solution computed. All outgoing edges from this fragment of the full trace

graph were stored in a data structure along with their conditions. If any such

condition was satis�ed in the current minimal solution, then the local constraints

of the targeted node were included, and a new, larger solution was computed.

This technique works as long as the conditions are monotonic, as explained in

Section 2.5, and it will ensure a polynomial running time.

In the present situation, with thousands of methods, even the collection of

outgoing edges is too colossal to manage. Hence we have developed an even more

frugal strategy, where we only generate those edges whose conditions are true in

the current minimal solution. As the solution increases over time, we may have to

go back to earlier processed nodes and include more edges whose conditions have

now become true. In particular, we may have to go back and extend previously

computed anc sets, when new tokens are added to type variables associated with

assignable parents. Adhering to this strategy leads to an acceptable performance.

As indicated earlier, the quality of the inferred types depends on �nding good

heuristics for duplicating the code of methods. For example, if no duplication is

done, the inferred type of 3+4 degrades to a set of nineteen tokens, rather than

the optimal two which our current heuristic can infer.

The problem can be described by looking at the message send in Figure 2,

where we must choose whether to create a duplicate of the method �. If we always

duplicated, then the type inference algorithm might never terminate since, for

example, a recursive method would result in an in�nite number of duplicates

being produced during the analysis. In [9] we created one duplicate for every

syntactic message send with selector id: in the original program. In the Self

algorithm we apply a \hash function" and create a duplicate if none already

exists with the same hash value. Since there are only �nitely many di�erent

hash values, termination is ensured. The hash value of the situation in Figure 2

is a triple:

(parse tree node for the send, origin(�), �):

Here, the origin(�) indicates the original version of the � method (� may of

course itself be a duplicate). The intuition behind this hash function has two

parts. The last component, �, ensures that each new receiver type will get its

own duplicate, resulting in a duplication strategy akin to customization [3]. The

18

�rst two components of the hash function re�nes this strategy to ensure that

sends that are di�erent in the original program will invoke di�erent duplicates,

even if the sends have the same receiver. This is useful because di�erent sends

often supply arguments of di�erent types. The situation is somewhat di�erent

for resends, but we will not elaborate this further.

We cannot use type information as part of the hash value, since this has not

been computed yet when the hash function must be applied. To compensate for

this, a small carefully selected set of methods from the standard Self world is

always duplicated, independently of what the hash value recommends. Part of

the careful selection is to guarantee termination of the algorithm. The selected

methods that are always duplicated include ifTrue:False: and other methods in

booleans, some double-dispatching methods (to preserve the type information of

the arguments through the second dispatch), and a few \cascading" sends.

The type inference implementation is written in 4,000 lines of Self. Currently

it uses a lot of memory; the examples in Section 3 were running in a 30 Mbyte

heap. The main reason for this voracity is that the implementation has not

been optimized for space. In practice, run time seems to be proportional to the

number of edges and the total size of all type variables. For the execution times

of the arithmetic examples, see Figure 8. The measurements were done on a

SPARCstation 2. The Hanoi and Search Tree examples have similar execution

times as those found in the �rst column of Figure 8, since in all these cases the

dominating factor is the bigInt arithmetic. Speci�cally, inferring types for the

Hanoi example involves 17,380 edges, 5,143 nodes, and takes 93 seconds.

5 Conclusion

We have developed and e�ciently implemented a powerful type inference al-

gorithm for Self. Our algorithm involves a novel way of de�ning and solving

constraints that describe a dynamically changing inheritance graph. To the best

of our knowledge, our type inference algorithm is the �rst algorithm to simul-

taneously handle dynamic inheritance, multiple inheritance, object based inher-

itance, and blocks with non-local returns. Furthermore, we have shown that

it can handle real programs such as the standard Self benchmarks, includ-

ing the traditionally di�cult (and often ignored) constructs of primitive failures

and user-de�ned control structures. Our algorithm provides detailed information

even for partial and incorrect programs rather than merely rejecting them; for

this reason it can be useful as a basis for various advanced tools.

The tools that can be based on the type information include a msgNotUnder-

stood-checker and an ambiguousSend-checker. Since the computed type informa-

tion is a precise and conservative approximation, the tools will be correspond-

ingly precise and conservative.

We have also presented a scenario in which a programmer uses an interactive

hyperbrowser that draws extensively on the type information inferred by our

algorithm to answer queries about types and control ow in a program.

19

Another possible tool could use the type information to identify unused

(dead) code. Dead code detection is important for generating stand-alone appli-

cations. Without type inference, one would have to include the entire standard

world since it would be hard to determine which parts could not possibly be

required at run-time. Using type information, a conservative (but quite precise)

approximation to code liveness could be computed, and methods and objects

that are deemed dead by this information could safely be omitted from the

application.

A further potential gain is particular to the Self technique of dynamic com-

pilation. The result of type inference gives an upper bound on the methods that

must be compiled; thus, these methods could be pre-compiled, obviating the

need for dynamic compilation and allowing the compiler to be omitted from

stand-alone applications.

The version of Self that we have described in this paper is the version that

was publicly released in the Fall of 1992 (release 2.0.1). It is both a simple and

a complex language. Simple, e.g., because it does not have classes and meta-

classes, but complex, e.g., because it has complicated inheritance rules [4]. The

type inference work has focused attention on many of the complexities, providing

input to an ongoing attempt to further simplify Self. One example is the recent

elimination of parent priorities.

The Self language is less amenable to type inference than many other object-

oriented languages, yet we have obtained promising results. We believe that our

algorithm is adaptable to other languages, including typed ones like C++. In

the latter case, our types would provide more precision than the type declara-

tions written by the programmer. Furthermore, since our algorithm could infer

concrete (implementation-level) types for each call site, it could be used as the

basis for compiler optimizations such as the inlining of virtual function calls.

Acknowledgement. The authors thank David Ungar, Randall Smith, Lars

Bak, Craig Chambers, Bay-Wei Chang, Urs H�olzle, and John Maloney for helpful

comments on a draft of the paper. The �rst author would also like to thank Sun

Microsystems Laboratories for its support.

References

1. Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs H�olzle, John Mal-

oney, Randall B. Smith, and David Ungar. The SELF programmer's reference

manual, version 2.0. Technical report, Sun Microsystems, Inc, 2550 Garcia Av-

enue, Mountain View, CA 94043, USA, 1992. SMLI document 93-0056. Available

by anonymous ftp from self.stanford.edu.

2. Alan H. Borning. Classes versus prototypes in object-oriented languages. In

ACM/IEEE Fall Joint Computer Conference, pages 36{40, 1986.

3. Craig Chambers and David Ungar. Making pure object-oriented languages prac-

tical. In Proc. OOPSLA'91, ACM SIGPLAN Sixth Annual Conference on Object-

Oriented Programming Systems, Languages and Applications, pages 1{15, 1991.

4. Craig Chambers, David Ungar, Bay-Wei Chang, and Urs H�olzle. Parents are

Shared Parts of Objects: Inheritance and Encapsulation in Self. In Lisp and

20

Symbolic Computation 4(3), pages 207{222, Kluwer Acadamic Publishers, June

1991.

5. Adele Goldberg and David Robson. Smalltalk-80|The Language and its Imple-

mentation. Addison-Wesley, 1983.

6. Justin O. Graver and Ralph E. Johnson. A type system for Smalltalk. In Seven-

teenth Symposium on Principles of Programming Languages, pages 136{150. ACM

Press, January 1990.

7. Justin Owen Graver. Type-Checking and Type-Inference for Object-Oriented Pro-

gramming Languages. PhD thesis, Department of Computer Science, University of

Illinois at Urbana-Champaign, August 1989. UIUCD-R-89-1539.

8. Henry Lieberman. Using prototypical objects to implement shared behavior in

object-oriented systems. In Proc. OOPSLA'86, Object-Oriented Programming Sys-

tems, Languages and Applications, pages 214{223. Sigplan Notices, 21(11), Novem-

ber 1986.

9. Nicholas Oxh�j, Jens Palsberg, and Michael I. Schwartzbach. Making type infer-

ence practical. In Proc. ECOOP'92, Sixth European Conference on Object-Oriented

Programming, pages 329{349. Springer-Verlag (LNCS 615), Utrecht, The Nether-

lands, July 1992.

10. Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In

Proc. OOPSLA'91, ACM SIGPLAN Sixth Annual Conference on Object-Oriented

Programming Systems, Languages and Applications, pages 146{161, Phoenix, Ari-

zona, October 1991.

11. Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference

for partial types. Information Processing Letters, 43:175{180, 1992.

12. Michael I. Schwartzbach. Type inference with inequalities. In Proc. TAPSOFT'91,

pages 441{455. Springer-Verlag (LNCS 493), 1991.

13. David Ungar and Randall B. Smith. SELF: The power of simplicity. In Proc.

OOPSLA'87, Object-Oriented Programming Systems, Languages and Applications,

pages 227{241, 1987. Also published in Lisp and Symbolic Computation 4(3),

Kluwer Acadamic Publishers, June, 1991.

14. Jan Vitek, R. Nigel Horspool, and James S. Uhl. Compile-time analysis of object-

oriented programs. In Proc. CC'92, 4th International Conference on Compiler

Construction, Paderborn, Germany, pages 236{250. Springer-Verlag (LNCS 641),

1992.

15. Mitchell Wand. A simple algorithm and proof for type inference. Fundamentae

Informaticae, X:115{122, 1987.

This article was processed using the L

a

T

E

X macro package with LLNCS style

21

